Mapping the Heavens: The Universe Revealed by the Sloan Digital Sky Survey

Josh Frieman

Constellations:

Patterns of Stars on the Sky

Aquarius

Aquarius

Perseus cluster:
A 'Constellation' of galaxies

2MASS Infrared Sky Survey

Large-scale Structure: patterns in the distribution of galaxies

Charles Messier (1730-1817)

Astronomer for French Navy

Discovered 20 comets

In the course of his search for comets, he catalogued fuzzy things that didn't move:

110 nebulae and star clusters

Messier 1

Remnant of Supernova of 1054, observed by Chinese and possibly by the Anasazi

Drawing by Lord Rosse c. 1844

J. Hester and P. Scowen (AZ State Univ.), NASA

M16, the Eagle Nebula: clouds of gas & dust that are forming new stars

John Herschel 1792-1871

Mathematician,
Musician, Lawyer,
Astronomer,
Photographer, ...

John Herschel 1792-1871

Catalogue of
Nebulae and Clusters

Based on observations over 4 years at Capetown, South Africa with his own 20-foot telescope

John Herschel 1792-1871

After a lifetime in Astronomy...

Edwin Hubble (1889-1953)

Lawyer,
Astronomer,
Boxer

Proved that Spiral nebulae are galaxies outside the Milky Way

Discovered the Expanding Universe

Fritz Zwicky (1898-1974)

Astronomer, eccentric personality

Pioneer of modern Sky Surveys

Discoverer of Dark Matter, Neutron stars,...

Sloan Digital Sky Survey (SDSS)

Dedicated 2.5-meter Telescope

International consortium of ~200 astronomers:

Changing the way Astronomy is done

Progress in Sky Surveys

- •The advent of telescopes led astronomers to find & catalog non-stellar objects: nebulae and clusters (Messier, Dunlop, Herschels, Dreyer's NGC, ...)
- •Advances in telescope optics and photography led to deeper catalogs covering larger portions of the sky (e.g., Schmidt telescopes with large fields of view)
- •Recent advances in detector technology (CCDs) and computing power have ushered in the new age of <u>digital sky surveys</u>.

1780--Messier: 110 objects 2005--SDSS: 100,000,000

The Universe Observed

The Universe contains a hierarchy of structure...

Human scale:

Size ~ 100 centimeters

Mass ~ 100 kilograms

Sarah & Helen Frieman

Planets: Size ~ 10 billion centimeters Mass $\sim 10^{26}$ kilograms

Ordinary Stars: Size ~ 100 billion cm Mass ~ 10³⁰ kilograms

M87 Nebula in Orion constellation

Interstellar gas clouds & star clusters:

Size ~ 3 light-years

 $\sim 3 \times 10^{18} \text{ cm}$

~18 trillion miles

Mass ~ 100,000 M_{sun}

An Infrared view of the Milky Way (our galaxy)

Galaxies: Size $\sim 10^{22}$ cm $\sim 60,000$ light-years Mass ~ 1 trillion M_{Sun} Self-gravitating systems of stars, gas, and dark matter

UGC 03214: edge-on galaxy in Orion

Galaxies come in a variety of shapes, sizes, colors, and luminosities

Clusters of Galaxies: Size ~ few Million light years Mass ~ 1 quadrillion (1000 x 1 trillion) M_{Sun}

Largest bound systems, they contain: galaxies, gas, dark matter

One Quadrillion pennies

New SDSS cluster 4 billion light years

More distant **SDSS Cluster**

The Expanding Universe: more distant objects appear redder

More distant galaxies appear redder

More distant galaxies appear redder

The amount of color (frequency) change is called the <u>Redshift</u>

Redshift of light is like the Doppler shift of sound as a train or racecar passes by

More distant galaxies appear redder.

They are moving away from us, with:

speed (redshift) [] distance

(Hubble's Law)

More distant galaxies appear redder.

They are moving away from us, with:

speed [] distance

A galaxy 100 Million light years away is receding from us at 2000 miles per second

We can thus use redshift as a stand-in for distance or for look-back time

Superclusters and Large-scale Structure:

Filaments, Walls, and Voids of Galaxies

Center for Astrophysics Redshift Survey (1986)

'Watermelon Slice' 6 degrees thick containing 1060 galaxies: position of each galaxy represented by a single dot

Radial coordinate is redshift (much easier to measure than distance)

Superclusters and Large-scale Structure:

Filaments, Walls, and Voids of Galaxies

Center for Astrophysics Redshift Survey (1986)

You Are Here

`Watermelon Slice' 6 degrees thick containing 1060 galaxies: position of each galaxy represented by a single dot

Superclusters and Large-scale Structure: Filaments, Walls, and Voids of Galaxies

'Watermelon Slice' 6 degrees thick containing 1060 galaxies: position of each galaxy represented by a single dot

Scale of CfA survey

By determining how the matter of the Universe is distributed in space, we can help address some basic questions in cosmology:

By determining how the matter of the Universe is distributed in space, we can help address some basic questions in cosmology:

How did galaxies and large-scale structures form?

By determining how the matter of the Universe is distributed in space, we can help address some basic questions in cosmology:

How did galaxies and large-scale structures form?

What is the Universe made of?

DARK MATTER
DARK ENERGY

By determining how the matter of the Universe is distributed in space, we can help address some basic questions in cosmology:

How did galaxies and large-scale structures form?

What is the Universe made of?

What happened in the earliest moments of the Big Bang?

The Big Bang Theory

The Universe has been expanding from a hot, dense 'beginning' for about 14 billion years

Only successful framework for several key facts about the Universe:

- Hubble's law of galaxy recession: expansion
- ☐ Isotropy of Cosmic Microwave background
- Cosmic abundances of the light elements

cooked in the first 3 minutes

Paradigm for Structure Formation

Padres Use Big-Bang Theory to Beat Mets

Mets	- 1. *X#35	5
Padro	es	12

By BUSTER OLNEY

SAN DIEGO, April 1 — Even before the Mets began the 1997 season today, Manager Bobby Valentine would not endorse his bullpen. "It is what it is," he said.

What it is, on opening day, is embarrassing. Mets relievers inherited a 4-3
lead from starter Pete Harnisch in the
bottom of the sixth inning, and before
achieving three outs, the bullpen etched
for itself a place in club history — the
Padres scored 11 runs in the sixth, tying a
single-inning record for Mets opponents.
It was the most runs ever allowed by a
National League team in one inning on
opening day.

It is what it is: Padres 12, Mets 5. Only 161 more games to go, and there's no telling how many relievers the Mets will employ before the end of this season.

After watching Mets relievers blow many leads last season, General Manager Joe McIlvaine traded for relievers Toby Borland, Ricardo Jordan and Greg McMichael and intended to promote Derek Wallace into a more prominent role in the bullpen hierarchy.

But Wallace began losing feeling in his fingers, and following surgery for an aneurysm, he will miss most of the season. His injury seemed to create fissures in the fragile Mets bullpen, and three weeks into spring training. Valentine began to speak of his bullpen with strain in his voice. In the last five days McIlvaine bought Barry

Evolution of
Structure in a
Simulated
Universe filled
with Dark Matter

Early

z=3

`The Cosmic Web'

Galaxies and Clusters form in sheets and filaments

Similar to the structures seen in galaxy surveys

z=2

Two Kinds of Galaxy Surveys

<u>Photometric</u>: imaging à 2D sky maps: positions, brightnesses (and colors if more than one band)

Spectroscopic: redshifts à distances (via Hubble's Law): 3D maps

UK Schmidt Imaging Survey (photographic plates)

Two Degree Field (2dF) Survey at the AAT

Galaxy
Spectroscopic
Targets
selected
from the
APM
Survey

400-fibre spectrograph with robotic positioner

SLOAN DIGITAL SKY SURVEY (2000-2008)

GOAL: MAP THE UNIVERSE IN 3 DIMENSIONS OVER A LARGE VOLUME

- Imaging Survey: ~100 million galaxies & stars
- Redshift Survey: ~1,000,000 galaxies and 100,000 quasars

covering $\sim 1/4$ of the sky

http://www.sdss.org

Survey Geometry On the Sky:

Northern
Survey:
~1/4 the sky

Southern Survey: 3 slices

(Look away from the Milky Way)

SDSS Digital Camera

Top to bottom:

g'
z'
u'
i'
r'
filters

Drift Scan Mode

120 Megapixels

Cooled to –200 degrees

Spectroscopic Plates for Redshift Survey

640 fibers per plate

Cosmic Microwave Background: Wilkinson Microwave

Anisotropy Probe (WMAP)

SDSS galaxies today

Combine these two to constrain Cosmology, e.g., the amount and properties of the Dark Matter

Large-scale Galaxy Distribution: what have we learned?

Pattern of large-scale structure + Microwave background observations tell us:

Large-scale Galaxy Distribution: what have we learned?

Pattern of large-scale structure + Microwave background observations tell us:

1. The Universe comprises:

5% Ordinary Matter (atoms, ...)

25% Dark Matter (exotic particles)

70% Dark Energy (even more exotic)

Large-scale Galaxy Distribution: what have we learned?

Pattern of large-scale structure + Microwave background observations tell us:

1. The Universe comprises:

5% Ordinary Matter (atoms, ...)

25% Dark Matter (exotic particles)

70% Dark Energy (even more exotic)

Einstein's General Relativity

Matter and Energy curve Space-Time

Everything moves in this curved Space-time

A massive star attracts nearby objects by distorting spacetime

Gravitational Lensing

magnification and distortion (shear)

Gravitational Lensing

Cluster of Galaxies

Galaxy Cluster Abell 2218

NASA, A. Fruchter and the ERO Team (STScI) • STScI-PRC00-08

`giant arcs' are galaxies behind the cluster, gravitationally lensed by it

Mapping
the Mass
in a Cluster
of Galaxies
via Weak
Gravitational
Lensing:

~90% of the Mass in the Universe is Dark (it doesn't shine)

Dark Matter

Faint Galaxies

Weak Lensing of Faint Galaxies: distortion of shapes

Note: the effect has been greatly exaggerated here

Lensing of real (elliptically shaped) galaxies

December 14, 1999

Science Tim

SDSS
Weak
Galaxygalaxy
Lensing

Luminous
Galaxies are
surrounded by
Massive Halos
of Dark Matter

Galaxies' Vastness Surprises Scientists

By JAMES GLANZ

Using a technique akin to overlaying thousands of faint X-ray images to create one sharp picture, astronomers have discovered that typical galaxies may be twice as large and contain twice as much mass as suggested by previous measurements. The new observations, which have emerged from a five-year census of the heavens called the Sloan Digital Sky Survey, indicate that an average galaxy extends invisibly for well over a million light-years into space and weighs the equivalent of at

Seeing Quadruple: Lensed Quasar

SDSS image: 4 images of the same quasar

SDSS Data is made Public

- Data is being released in stages, semi-annually
- 4th Data Release a few days ago
- Access via the SkyServer website:

http://cas.sdss.org

excellent resource for education/outreach

• General information about the Survey:

http://www.sdss.org

The Future

New Surveys with even more powerful telescopes

Virtual Observatory: Deskchair Astronomy

Joint Dark Energy Mission:

Proposed satellite to observe distant
Supernovae and carry out deep
Weak Lensing
survey
to probe the nature of the
Dark Energy

Large Synoptic Survey Telescope

Proposed 8.5m ground-based telescope with 7 square degree field of view

5000 Gigabytes/night of data

Real-time analysis

"Celestial Cinematography"

Also: VISTA, DES,
PANSTARRS,...

Further Reading

Mercury, March/April 2003 (Vol. 32, No. 2):

Special Issue: Surveying the Universe

Articles on SDSS, 2MASS, 2dF, NVO

(Astronomical Society of the Pacific)

3d Flythrough Movie